

How dCache Namespace Works
● View from database performance

– PNFS
– Chimera

How PNFS works
● All files and directories have unique PNFSID, which is a unique

key in the table.
● All meta data associated with files and directories also have

PNFSIDs (differ from PNFSID of associated files)
● The data associated with PNFSIDs are stored as “blob”.
● “blob” is used like hash.

– “blob” not only include meta information (sometimes) but
also include PNFSIDs

● “blob” needs to be decoded to link to the next
PNFSIDs → CPU Expensive

● Size of “blob” is limited.

Content of directory data blob
● Data Blob of associated with PNFID of directory

contains five PNFSIDs (at least)
– PNFSID of itself
– PNFSID of metadata PNFSIDs
– PNFSID of parent directory
– Two PNFSIDs

● The data blob of each of two PNFSIDs contains
list of all PNFSIDs of files and and sub-
directories within this directory if the number is
relatively small (~100) If not, it contains

Dcache PNFS example
● srm://dcsrm.usatlas.bnl.gov/pnfs/usatlas.bnl.gov/BNLT1D0/data08_cos/RAW/data08_cos.00072

854.physics_HLT_Cosmics_MU3.daq.RAW.o3/daq.CTPRPCTGC.0072854.physics.HLT_Cosmi
cs_MU3.LB0026.SFO-5._0001.data

● BNLT1D0 → PNFSID of “BNLT1D0” → data blob contains the two PNFSIDs.

– Data blobs for these two PNFSIDs contain the list of many PNFSIDs.
● Data for these PNFSIDs from these two list contain the name of files

and/or directories and associated PNFSID, one of which corresponds to
“data08_cos” sub directory

● data08_cos → Repeat the same process to get PNFSID of “RAW” sub directory.

● RAW → Again, repeat the process to get PNFSID of “data08_cos.....03” sub directory. However,
these is a difference due to the size limit in data blob. Since “RAW” contains many
subdirectories (~1k), the list of PNFSIDs can not contain all subdirectories. As a result, it uses
the list of the list, resulting more queries.

● data08_cos.00072854.physics_HLT_Cosmics_MU3.daq.RAW.o3 → Again, repeat the same
process to get PNFSID of
the file, daq.CTPRPCTGC.0072854.physics.HLT_Cosmics_MU3.LB0026.SFO-5._0001.data
But, also, get meta data for this file, which have different PNFSIDs. (yet more quries)

PNFS Summary
● “ls” of directory is very expensive in PNFS due to the

requirment of (many) SQL queries + decodeing of
many blobs

● During the high load time, it is CPU limited. Decoding
of blob is expensive!

● Although PNFS database design is highly limited,
there is one nice feature. That is that PNFS deamon
catches the information for subsequent requests.

Chimera
● It does not use “blob” data → no decoding of “blob”

– one SQL query will get all files in one directories vs
many SQL queries to get all files in PNFSD

● “ls” of directories in Chimera will be much faster
than in PNFS

● Very similar in design to LFC (another psedo file system)
● Look up by the multiple clients should work faster due to the

non-blob-decoding. In PNFS, blob-decoding acts like the table
lock.

● It does not seem to catch the previous SQL lookup. As a result,
it requires the similar number of real SQL queires to get the
specific file information as PNFD.

Chimera Schema
 iparent | iname | ipnfsid

--------------------------------------+-----------------+--------------------------------------
...
...

 000000000000000000000000000000000000 | pnfs | 000039DCBE4B7CD144C386DF6DC060C238AA
 000039DCBE4B7CD144C386DF6DC060C238AA | . | 000039DCBE4B7CD144C386DF6DC060C238AA

 000039DCBE4B7CD144C386DF6DC060C238AA | .. | 000000000000000000000000000000000000
 000039DCBE4B7CD144C386DF6DC060C238AA | usatlas.bnl.gov | 0000EDCFFAA3B6504CEA812425A628EF5515

 0000EDCFFAA3B6504CEA812425A628EF5515 | . | 0000EDCFFAA3B6504CEA812425A628EF5515
 0000EDCFFAA3B6504CEA812425A628EF5515 | .. | 000039DCBE4B7CD144C386DF6DC060C238AA

...
 0000EDCFFAA3B6504CEA812425A628EF5515 | data | 000026B93E15908E4D188943A429A13B6E9D

 000026B93E15908E4D188943A429A13B6E9D | . | 000026B93E15908E4D188943A429A13B6E9D
 000026B93E15908E4D188943A429A13B6E9D | .. | 0000EDCFFAA3B6504CEA812425A628EF5515

...
 000026B93E15908E4D188943A429A13B6E9D | iriswu | 0000F4DDB2480AE74ACBB5773C210EE39B2C
 0000F4DDB2480AE74ACBB5773C210EE39B2C | . | 0000F4DDB2480AE74ACBB5773C210EE39B2C
 0000F4DDB2480AE74ACBB5773C210EE39B2C | .. | 000026B93E15908E4D188943A429A13B6E9D

 iparent | iname | ipnfsid
--------------------------------------+--------+--------------------------------------

 000026B93E15908E4D188943A429A13B6E9D | iriswu | 0000F4DDB2480AE74ACBB5773C210EE39B2C

 iparent | iname | ipnfsid
--------------------------------------+--------------+--------------------------------------

 0000F4DDB2480AE74ACBB5773C210EE39B2C | sub1_dir8999 | 0000AE61254043B14B85B417FDB0FEAEB6CA

 iparent | iname | ipnfsid
--------------------------------------+--------------+--------------------------------------

 0000AE61254043B14B85B417FDB0FEAEB6CA | testfile9901 | 00001E668A6A7D3E4760932F8D43EBAFB52D

Comparison of PNFS and Chimera
from Datatabase trace

● Test setup.
– /A/B/C/File.i i=0..10000

● PNFS
– ~15 SQLs

● Chimera
– ~12 SQLs

● Single thread performance of “ls /A/B/C/File.i”
shows Chimera being 27% improvement.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

